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Abstract: 
Background: Lymphoma is one of the leading causes of death in adults and 

children. Diagnosing a specific subclass of lymphoma requires comprehensive 

histological evaluation and immune histochemistry analysis. In this study, we 

examine the ability of an artificial intelligence-based classifier to differentiate 

between Hodgkin disease (HD) and non-Hodgkin lymphoma (NHL) based on 

their radiomic print. 

Methods: A retrospective cohort was conducted for the patients diagnosed with 

lymphoma between 2019 and 2023. The initial baseline PETCT scans of these 

patients were retrieved. The active lesions were segmented and the radiomic 

features were extracted. The collected features were split into a training set 

(80%) and a validation set (20%). The primary endpoint of this study was used 

to build a classifier that could predict the type of lymphoma (Hodgkin or Non-

Hodgkin). The training set was used to develop the model and the validation set 

was used to validate the results. 

Results: The study included 78 patients. Hodgkin disease was seen in 51 

patients. The total number of identified and segmented lesions was 222, and 111 

of them were retrieved from HD scans. Radiomic features were extracted from 

the PETCT. Several modelling approaches were examined. The highest 

accuracy was seen with the TabPFN classifier with a validation set accuracy of 

73.3%. The model achieved an F1-score of 0.76 and 0.70 for HD and NHL, 

respectively. 

Conclusion: The TabPFN-based classifier achieved an accuracy of 73.3% on 

the validation sets. Further research on large sets is necessary. 
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Background: 
Lymphoma represents is ranked within the top ten 

types of cancer that affect adults and paediatric 

populations. Since the discovery of the disease in 1832, 

there have been enormous efforts to characterise 

lymphoma into different subclasses [1]. Each of these 

subsets mandates clinical application of specialised 

management protocols. Classically, several steps are 

necessary to achieve correct and robust 

histopathological diagnosis. They include fixation of the 

pathological sample followed by embedding and proper 

sectioning. Finally, the samples are stained by 
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haematoxylin and eosin, and specialised monoclonal 

antibodies that target specific antigens within the 

malignant cells. Afterwards, experienced pathologists 

would review the results and confirm the final 

diagnosis. Naturally, this step takes between ten and 

fifteen days depending on the experiences and 

equipment within each of the laboratory [2].  

Radiomics focuses on automated or semi-automated 

quantitative feature extraction from medical imaging. It 

converts biomedical images into a high-dimensional 

matrix which represents the hidden features within these 

images. These features can be processed quantitatively 

by advanced computer algorithms. The output of these 

processing steps would help in the qualitative 

evaluation of the tumours [3]. The classic workflow of 

radiomics extractions depends on image accusations, 

segmentation of the lesions of interest, feature 

extractions by specialised protocols and finally data 

analysis [4]. What differentiates radiomics from 

conventional qualitative radiology is its dependence on 

reproducible quantitative measurements rather than 

human-eye evaluation. This would offer a stable and 

reliable interpretation of clinical data within the 

radiographic scans [5, 6]. 

Several authors examined the role of radiomics in 

lymphomas. These projects mainly focused on 

predicting outcomes post-therapy in specific subsets of 

the disease such as Mantel cell lymphoma and Diffuse 

large B-cell lymphoma [7, 8]. In our project, we 

examine the possibility of differentiating Hodgkin 

lymphoma from non-Hodgkin lymphoma based on their 

radiomic features and explore the possibility of using 

this in clinical settings. 

       

Patients and Methods: 
Trial Design and Conduct  

We conducted a retrospective review of PETCT 

scans of patients who had been diagnosed with 

lymphoma between 2019 and 2023. The primary aim of 

this study is to build a machine-learning model to 

predict the histological subtype of lymphoma (Hodgkin 

or Non-Hodgkin) based on its radiomic print in the 

initial PETCT scan. 

 

Patients’ Population 

The patient population included patients who were 

diagnosed with lymphoma (HD and NHL) and had 

PETCT scans for their initial staging.  The DICOM data 

of these scans were retrieved and included in this study. 

 

Study Endpoint 

The primary endpoint was to examine the ability of 

machine learning to classify the lymphoma into 

Hodgkin or non-Hodgkin based on their radiomic print.  

 

Machine Learning 

The PETCT DICOM were explored by Slicer 

version 5.4.0 where positive lesions were manually 

contoured and used for extraction of radiomic features. 

Inter-rater variability in lesion contours was minimized 

by employing dual manual segmentation from two 

experienced nuclear physicians. The First-order 

statistics, Grey Level Co-occurrence Matrix (GLCM), 

Gray Level Dependence Matrix (GLDM), Gray Level 

Run Length Matrix (GLRLM), Gray Level Size Zone 

(GLSZM), Neighbouring Gray Tone Difference Matrix 

(NGTDM), Shape-based 3D, and Shape-based 2D 

feature classes were used to generate the radiomic 

features. 

 The extracted features were manipulated later by 

the Python 3.10 package, NumPy and Pandas. Several 

steps were taken to achieve data preprocessing. They 

included conversion of data to float points ‘float32’, 

class imbalance correction by RandomOverSampler of 

the Imblearn library, individual feature rescaling 

between 0 and 1.0, and dimensionality reduction by 

Principal Component Analysis (PCA) of Sci-kit learn. 

The step of PCA was necessary to reduce the features to 

20 and meet the threshold of the TabPFN classifier. The 

final step of preprocessing was randomly splitting the 

data into training and test sets with a split size of 20% 

for the test set. Afterwards, the TabPFN library was 

used to build a classification model with 16 ensemble 

configurations. The process is summarised in Figure 1. 

The performance of the proposed model was compared 

to several other machine learning approaches including 

XGboost, random forest classifier, Bagging classifier, 

and Feed-forward neural network. 

 

 

 

 
Figure 1 – The Process of radiomics extractions and 

data processing. 
1. The PETCT data were retrieved from the DICOM server. 

2.  The disease sites were segmented.  

3. The contoured volumes were processed by Slicer for 

radiomic feature extraction.  

4. The Extracted Features were concatenated, preprocessed 

(Imbalance correction and Min/Max Scaling), and had 

dimensionally reducted. 

5. The data was processed by the TabPFN classifier for 

disease classification. 

 

 

Ethics statement 

The Research Ethics Board of the hospital has 

approved the study. Informed consents were obtained 

from the participants or their legal guardians. Unique 

codes were used to de-identify the patients’ names and 

maintain confidentiality. 
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Results:  
Patient demographics and flow of data processing 

The total number of patients included in this study 

was 78. Hodgkin disease was seen in 51 of them. The 

utter number of extracted lesions was 222. HD disease 

compromised 111 of them. Table 1 illustrates the 

anatomical distri4bution of the included lesions. 

 

 

 

 
Figure 2 outlines the sequential stages involved in the 

data collection process. 

 

 

 

 

Table 1 - Anatomical Distribution of included lesion 

 HD 

 (n = 

111) 

NHL 

(n = 

111) 

Cervical Lymph Nodes 57 45 

Mediastinal Lymph Node 28 39 

Para-aortic Lymph Nodes 15 21 

Iliac Nodes Lymph Node 6 4 

Spleen 5 2 

 

 

 

TabFPN Performance  

The model achieved an accuracy of 97.7% on the 

training set and 73.3% on the test set. The precision, 

recall and F1 scores of the model were included in 

Table 2. Figures 3 and 4 show the confusion matrix of 

the training and test sets, respectively. 

 

 

 

 

Table 3 illustrates the performance among other 

comparative models. These comparative models were 

XG-Boost, Random Forest Classifier (RFC), Bagging 

Classifier, and Feeding Forward neural network (FFN). 

The reported models either suffered from broad 

underperformance or overfitting the training set. 

However, the best performing model was RFC with 

accuracy of 0.85 and 0.67 for the training and validation 

set, respectively. The worst performance was seen by 

FFN with accuracy of 0.50, and 0.44 for training and 

validation, respectively. 

 

 

 

 

 
Figure 3 - Confusion matrix of the training set showing 

accuracy of prediction of the two different subclasses. 

 

 

 

 

 

 

 

 

 
 

Figure 4 - Confusion matrix of the validation set 

showing accuracy of prediction of the two different 

subclasses. 
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Table 2 – Precision, Recall and F1 Score of the proposed model 

 Precision Recall F-1 Score 

HD NHL HD NHL Total HD NHL 

Training Set 0.98 0.98 0.98 0.98 0.98 0.98 0.98 

Test Set 0.70 0.78 0.83 0.64 0.73 0.76 0.70 

 

 

 

 

Table 3 – Performance of other comparative models 

 XGB Boost1 RFC2 Bagging Classifier3 Neural Network4 

Accuracy Training 1.0 0.85 0.63 0.50 

Validation 0.64 0.67 0.51 0.44 

F1 Score Training 1.0 0.85 0.56 0.25 

Validation 0.66 0.68 0.42 0.13 

1- XGB boost: max depth of 3, number of estimators 150, and minimum child weight 3. 

2- Random Forest Classifier: max depth of 3, number of estimators 100. 

3- Bagging Classifier: Logistic regression as base estimator, number of estimators 20. 

4- Neural network: three dense layers (512, 512, 256), each followed by ReLU activation layer, Batch-

Normalization and Dropout of 0.3. Final layer had single node with Sigmoid Activation function. 

 

 

 

 

 

 

Discussion: 

PETCT was introduced in 1998 as functional 

imaging that expresses the metabolic signature of 

tissues over the anatomical landmarks [9]. Several 

traditional approaches such as metabolic tumour 

volume (MTV), total lesion glycolysis (TLG), intra-

tumoral heterogeneity, and standardised uptake value 

(SUV) were proposed to characterise the found lesions 

inside the PETCT scans. These parameters reflected the 

activity within the tumours. Also, they were linked to 

response to treatment or worse prognosis [3, 10].  

The clinical benefit from these parameters makes it 

clear that the quantitative evaluation of PETCT is worth 

further exploration. Therefore, radiomics was 

introduced in this setting [11-13]. Radiomics relies on 

mathematical methods that can define lesions 

quantitatively. It focuses on describing the size, shape, 

morphology, heterogeneity of texture and edge of the 

lesions. Simply, Radiomics features are just matrix 

representations of the lesions of interest within an 

image. This extracted information can be processed 

further to conclude and test different clinical hypotheses 

[14]. 

Lymphoma as a disease exhibited the largest 

footstep in the field of radiomics. Earlier studies 

showed the ability of radiomics to discriminate 

lymphomas from non-lymphomas [11, 15]. Moreover, 

several studies found that radiomics can correlated with 

lymphomatous infiltration of the bone marrow, and 

disease prognosis [8, 16]. Most of these studies just 

focused on a single subset of lymphoma such as 

Hodgkin's disease, diffuse B-cell lymphoma or mantel 

cell lymphoma. Also, these studies varied in the number 

of features included in their analysis. Some of them 

adapted a few parameters such as metabolic bulk 

volumes, or heterogeneity index, while others included 

hundreds of features in their methodology [12]. 

To our knowledge, only one study tried to use 

extracted features from the CT scan of the PETCT to 

differentiate between different subsets of lymphoma. 

The authors included 71 patients, and nearly two-thirds 

of them had non-Hodgkin lymphoma. They used 

multilayer perceptron and achieved an accuracy of 

75.76% in their validation set [17]. In our model, 

examined 78 patients. Roughly, two-thirds of them had 

Hodgkin's disease. We used Slicer’s segment editor to 

do manual segmentation. Then, we extracted the 

radiomic features from both the CT and PET images. 

Our TabPFN classifier achieved an accuracy of 97.7% 

on the training set and 73.3% on the test set.  Also, it 

outperformed the other proposed model architecture in 

Table 3. 

 

Clinical Significance of the model 

While clinical guidelines emphasize the importance 

of histopathological classification for lymphoma 

diagnosis before treatment, this isn't always clinically 

feasible, especially in urgent situations. The traditional 

immune histochemistry analysis can take several days 

due to tissue processing and interpretation by 
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pathologists [2]. In life-threatening presentations such 

as spinal cord compression or high tumour burden 

leading to multi-organ failure, such delays can have 

serious life-threatening consequences [18, 19]. We 

understand that our model is by far less accurate 

compared to the conventional approaches in classifying 

the disease, but it can compete effectively when it 

comes to the time perspective.  This speed may be 

valuable to haematologists and oncologists in 

expediting the initiation of potentially life-saving 

therapies in time-sensitive situations, while 

concurrently laying the groundwork for more definitive 

diagnoses and targeted treatment plans once 

conventional methods become available. 

Moreover, our model could potentially facilitate 

rapid screening of all nodal groups within the body, 

offering insights into the class of lymphoma. This could 

contribute to addressing limitations inherent in the 

typical diagnostic approach, which often relies solely on 

histopathological analysis of a single excised lymph 

node [20]. While convenient, this approach carries an 

inherent limitation: it assumes the excised node reflects 

the entire disease burden throughout the body, 

potentially overlooking the presence of concurrent 

Hodgkin and non-Hodgkin lymphomas, collectively 

known as Poly-lymphomatous Syndrome (PLS) [21-

23]. The precise incidence of PLS remains unknown, 

with documented case series and reports suggesting its 

existence. Estimates suggest it might be more prevalent 

than currently recognized [23]. In some cases, the 

presence of PLS is suspected when patients exhibit poor 

treatment response, prompting additional biopsies from 

non-responsive sites to investigate this possibility [24, 

25]. Screened nodes exhibiting discrepancy from the 

expected disease type should undergo additional biopsy 

and evaluation. This approach would lead to pre-

emptive diagnosis of conditions such as PLS instead of 

waiting several weeks before finding a patient is not 

responding well to cytotoxic therapies.  

Furthermore, expanding research on lymphoma 

characterization using radiomics could offer valuable 

insights into potential cost-effectiveness gains 

compared to conventional methods. While the average 

cost of performing immune histochemistry analysis on a 

single sample ranges between 500 and 1000 USD [26, 

27]. On the other hand, the global estimate of 

approximately one million new lymphoma cases yearly 

highlights the potential impact of improving diagnostic 

accuracy and streamlining workflows [28]. Therefore, 

collaborative efforts to build large datasets of diverse 

PET-CT scans represent a promising avenue for 

developing more robust classifiers. However, directly 

attributing significant cost reductions to these classifiers 

compared to conventional methods remains premature 

and requires comprehensive analysis beyond the scope 

of this research. 

 

Limitation 

Our study has two major limitations. The first was 

the retrospective nature of the data making it less prone 

to bias. Also, the included sample size was 78 patients 

constraining its power significantly. 

 

Conclusion: 
We developed a model based on the TabPFN 

classifier, which supports previous findings 

demonstrating the ability of radiomics to characterize 

lesions in PET-CT scans. Our model achieved an 

accuracy of 73.3% in predicting the specific subtype of 

lymphoma on the validation set. Further research is 

necessary, particularly as such technologies have the 

potential to improve cost-effectiveness, especially in 

resource-constrained healthcare systems. 
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