

Dosimetric Comparison between Intensity-Modulated Radiation Therapy (IMRT) and 3D Conformal Radiotherapy for Adjuvant Left Breast Cancer

Abdelhafeez AAM¹, Osama N², Abdelkhalik A², Al-rashidy W², Abdou I¹, Ezz D¹, Al-zawahry I³

- ¹ Clinical Oncology Department, Cairo University.
- ² Radiation Oncology Department, Aswan Cancer Center
- ³ Clinical Oncology Department, Egyptian Atomic Energy Authority

Abstract:

Introduction: The aim of radiotherapy (Rth) is to provide optimal dose to the target with the least dose to surrounding risk structures. Intensity-modulated radiation therapy (IMRT) intends to improve the reach of optimal dose conformity to the target with the least risk structure dose. The aim of the study is to compare dose to the target and risk structures using (IMRT) and 3D conformal radiotherapy (3DCRT) for adjuvant left breast cancer.

Methods: This study included 20 localized unilateral breast cancer patients treated for adjuvant 3DCRT in the Aswan Cancer Centre. The treatment was planned for 3DCRT and then another plan for IMRT later on for the purpose of this dosimetric study. We compared both plans for target structure coverage, risk structure, and number of monitor units.

Results: PTV total V95% was significantly better for IMRT vs. 3DCRT (92.2%) vs. 88% (p = 0.025). The conformity index was also significantly superior for IMRT planning. The other parameters for PTV total coverage and homogeneity index showed no significant difference between both techniques. IMRT insignificantly reduced the mean heart dose, 2.6 Gy for IMRT vs. 3.2 Gy for conformal (p = 0.368). It was also observed that the IMRT plans achieved a lower left lung dose than the conformal ones, i.e., 7.7 Gy vs. 7.9 Gy (p = 0.38). Contralateral breast mean and D5 doses were significantly lower in favour of 3DCRT vs IMRT (0.7 vs. 1.1 and 0.1 vs. 0.8; P values =0.01 and 0.043)

Conclusion: Overall, IMRT achieved superior dose parameters and marginally better risk structures sparing than 3D-CRT. However, contralateral breast mean and D5 doses were significantly better in favour of conformal planning.

Keywords: breast cancer, radiotherapy, left sided breast cancer, dosimetry

Received: 23 May 2023 Accepted: 13 June 2023

Authors Information:

Ahmed A.M. Abdelhafeez Clinical Oncology Department, Cairo University

email: Hbaboda@kasralainy.edu.eg

Nourhan Osama

Oncology Radiation Department,

Aswan Cancer Center

email: Nourhan.osama.anwar@gmail.com

Asmaa Abdelkhalik

Physicist, Aswan Cancer Center email: Asmaasadek15@yahoo.com

Walaa Al-rashidy

Physicist, Aswan Cancer Center

email: Walaaabdelwahab254@yahoo.com

Inas Abdou

Clinical Oncology Department, Cairo

University

email: Inasabdou_onco@hotmail.com

Dina Ezz

Clinical Oncology Department, Cairo University

Onco.dina@yahoo.com

Ibraheem Al-zwahry

Clinical Oncology Department, Egyptian Atomic Energy Authority email: Isz84@hotmail.com

Corresponding Author:

Ahmed A.M.Abdelhafeez Clinical Oncology Department, Cairo University

email: Hbaboda@kasralainy.edu.eg

Introduction:

Breast cancer is a major health problem worldwide and leading death cause in women in both developing and developed countries. [1]. Localized breast cancer is usually treated by surgery and combination of chemotherapy, hormonal, targeted therapy radiotherapy which is personalized for each case [2]. Adjuvant radiotherapy is usually indicated in patients with T stage more than 5 cm and /or positive lymph nodes which result in improvement in local recurrence and overall survival in some cases [3,4,5].

Our aim is give best tumor coverage with least dose to risk structures, so 3DCRT can do this work. However, this may be a challenge [6,7]. With introduction of IMRT, better coverage of target volumes and less dose to risk structures esp. heart and coronaries is suggested to be achieved by the new technique [8–10].

Van der Laan et al. study compared IMRT vs 3DCRT in left sided breast cancer and showed better coverage and less heart dose [11].

The aim of the study is to compare dose coverage to the target and risk structures using intensity modulated radiation therapy (IMRT) and 3D conformal radiotherapy for adjuvant left breast cancer.

Patients and Methods:

This study included 20 localized unilateral left breast cancer patients indicated per protocol; for adjuvant radiotherapy treated in the Aswan Cancer Centre, Egypt.

Patients were older than 18 years. All patients underwent surgery and received adjuvant systematic treatment per center protocol. CT images for simulation were taken from neck to end of lung bases

For the same patient two plans were done 3DCRT and IMRT with the aim of 95%coverage to PTV by 95% of intended dose.

Homogeneity index and Conformity index were defined according to the International Commission on Radiation Units and Measurements (ICRU) Report 83 [13] For the critical structures, heart mean dose and other parameters as V30, V5, and V10 of the heart.

Regarding lung V20, V5, and V10 and the mean dose of the ipsilateral lung, and the mean dose of the contralateral breast were calculated. The monitor units and treatment delivery times were counted.

All data were entered into and analyzed using Microsoft Excel 2007 and the Statistical Package for Social Sciences (SPSS) version 20.0 (IBM Corp., Armonk, New York, USA) for statistical analysis. Quantitative data were analyzed using the t-test for two independent means. The two-tailed p-value reports were statistically significant at an alpha level of 0.05.

Results:

Target coverage

PTV total V95% is 88.8% 1.1% with 3D conformal and 92.2% 1.1% with IMRT (p = 0.025). Motor units used were significantly higher for IMRT. All coverage parameters are shown in Table 1.

Normal tissue sparing

IMRT slightly reduced the mean dose to the heart, 2.6 Gy for IMRT vs. 3.2 Gy for conformal (p=0.368). (Table 2). It was also found that the IMRT plans achieved a lower mean dose to the left lung than the conformal ones, i.e., 7.7 Gy vs. 7.9 Gy (p=0.38). Moreover, the values of left lung V10, V20, and V30 were 23.7.0%, 20.7%, and 10.4 for conformal, and 21.8, 12.4, and 6.9 for IMRT, respectively. The mean dose to the contralateral breast was 16.9 and 15.7 Gy, respectively (p=0.5).

The dose rate for 3D conformal was 325 MU/min, and the maximum dose rate for IMRT was 1013 MU/min (0.02) (Table 2).

Table 1: Comparison of the dose coverage between IMRT and 3DCRT

	Conformal (mean±SD)	IMRT (mean±SD)	P value
PTV total V95 (%)	88.8±4.7	92.2±1.4	0.025
PTV total max (Gy)	43.18±0.43	43.2±0.38	0.74
PTV total min (Gy)	19±9.5	24.2±6	0.08
PTV total mean (Gy)	39.7±0.4	40.2±0.27	0.12
Conformity index (CI)	0.69 ± 0.12	0.85 ± 0.13	0.052
Homogeneity index (HI)	0.17 ± 0.09	0.14 ± 0.08	0.15
MU	325±10	1013±145	.0001

PTV total: planning target volume; IMRT: intensity modulated radiotherapy

Table 2: Comparison parameters of normal tissue between conformal and IMRT

	Conformal (mean±SD)	IMRT (mean±SD)	P value
V10 lung cm ³	23.7±5.6	21.8±5.3	0.4
V20 lung cm ³	20.7±13	12.4±3	0.15
V30 lung cm ³	10.4±4.1	6.9±3.1	0.34
Lung mean dose Gy	7.9±1.7	7.7±1.8	0.38
Heart Max dose Gy	38.7±2	38.4±2.8	0.87
Heart mean dose Gy	3.2±0.5	2.6 ± 0.5	0.368
D33 heart Gy	2.5±0.4	1.7±0.2	0.69
V25 heart cm ³	1.8±1	1.4±1	0.68
V10 heart cm ³	4.7±2.2	5.3±1.7	0.117
Contralateral breast max dose Gy	7.6 ± 5.6	20±12	0.015
Contralateral breast mean dose Gy	0.7 ± 0.1	1.1±0.35	0.02
Contralateral breast D5 Gy	1.9 ± 0.4	2.5±1	0.03
Contralateral breast V5 cm ³	0.1 ± 0.13	0.8 ± 0.6	0.012
Coronary artery max dose Gy	39.2±6	36.3±16	0.28
Coronary artery mean dose Gy	17.1±7.4	15.1±8	0.542
Coronary artery D5Gy	31.2±8.3	28.2±9.9	0.32
Coronary artery D2 Gy	33.2±7.3	30.7±8.2	0.43
Coronary artery D25 Gy	23.7±10	22±12	0.43

IMRT = intensity-modulated radiotherapy; SD = standard deviation.

Discussion:

Theoretically, IMRT can achieve better tumor coverage and less dose to risk structures but this needs clinical validation. In our study, we reported a dosimetric comparison between the two techniques in 20 cases of left-sided breast cancer.

In our study, the 3D-CRT and IMRT plans showed better PTV V95% coverage in favor of IMRT planning, and the MU used was statistically higher for the IMRT group, which is consistent with many other studies [24, 25; 28–33].

Moreover, the conformity index was statistically significant for IMRT planning, and this is consistent with most of the previous studies [25, 28–31].

However, a study conducted by Rastogi K. et al. showed no difference between the 2 techniques regarding PTV V95% coverage.

Other parameters, such as PTV max (Gy), PTV min (Gy), PTV mean (Gy), and homogeneity index (HI), were not statistically different between the 2 groups. In similar studies, these parameters showed contradictory results [24, 25; 28–33].

Mean lung dose and V20 less than 30% is good predictors for clinical pneumonitis in breast cancer and non small cell lung cancer cases [16-19].

In our study, there was no difference regarding lung dose constraints between IMRT and 3DCRT. This is consistent with several studies that showed that IMRT significantly reduced the ipsilateral lung dose and heart dose in 20 subsequent postmastectomy breast cancer patients. However, in low dose region constraints (lung V5, 10), 3DCRTH showed less dose received as compared to IMRT. [24,25,28-31].

However, a study done by Baycan et al. showed no difference between the two techniques regarding lung dose constraints.

In breast cancer patients, heart dose is crucial as large number of patients receiving cadiotoxic drugs as anthracycline and trastuzumab especially for left sided patients [20-23].

In our study, the dose to the heart in the IMRT plan and the 3D-CRT plan was not statistically significant, and this was consistent with other studies that showed conflicting results [24, 25; 28–31].

The dose to the contralateral breast is another important problem we should consider especially for younger age. Older studies showed that mean dose to the contralateral breast was 3.2 Gy with RapidArc [26, 27]

In our study, contralateral breast mean and D5 doses were significantly better in favor of conformal planning; however, other similar studies showed conflicting data [24, 25; 28–31].

The limitation of this study is the relative small number of patients included; it is also better for this study to include a systematic review of all previous similar studies.

Conclusion:

Overall, our results showed that IMRT achieved better target coverage and marginally better normal tissue sparing than 3D-CRT. However, contralateral breast mean and D5 doses were significantly better in favour of conformal planning.

References:

- Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71: 209– 49
- Caudell JJ, De Los Santos JF, Keene KS, et al. A dosimetric comparison of electronic compensation, conventional intensity modulated radiotherapy, and tomotherapy in patients with early-stage carcinoma of the left breast. Int J Radiat Oncol Biol Phys. 2007;68:1505–11.
- 3. Chen Z, King W, Pearcey R, et al. The relationship between waiting time for radiotherapy and clinical outcomes: a systematic review of the literature. Radiother Oncol. 2008 Apr;87(1):3-16.
- 4. Wang J, Li X, Deng Q, et al. Postoperative radiotherapy following mastectomy for patients with left-sided breast cancer: a comparative dosimetric study. Med Dosim. 2015 Autumn;40(3):190-4.
- Motwani SB, Strom EA, Schechter NR, et al. The impact of immediate breast reconstruction on the technical delivery of postmastectomy radiotherapy. Int J Radiat Oncol Biol Phys. 2006 Sep 1;66(1):76-82.
- 6. Coskun M, Ozsahin M, Sozzi WJ, et al. Application of Tomotherapy in Breast Cancer Patients. In: Haydaroglu A, Ozyigit G, editors. Principles and practice of modern radiotherapy techniques in breast cancer. New York: Springer Science and Business Media; 2013. pp. 299–318.
- Hjelstuen MH, Mjaaland I, Vikstrom J, et al. Radiation during deep inspiration allows locoregional treatment of left breast and axillary-, supraclavicular- and internal mammary lymph nodes without compromising target coverage or dose restrictions to organs at risk. Acta Oncol. 2012;51:333–44.
- 8. Dogan N, Cuttino L, Lloyd R, et al. Optimized dose coverage of regional lymph nodes in breast cancer: the role of intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys. 2007;68:1238–50.
- Beckham WA, Popescu CC, Patenaude VV, et al. Is multibeam IMRT better than standard treatment for patients with left-sided breast cancer? Int J Radiat Oncol Biol Phys. 2007;69:918–24.

- 10. Coles CE, Moody AM, Wilson CB, et al. Reduction of radiotherapy-induced late complications in early breast cancer: the role of intensity-modulated radiation therapy and partial breast irradiation. Part II--Radiotherapy strategies to reduce radiation-induced late effects. Clin Oncol (R Coll Radiol) 2005;17:98–110.
- 11. van der Laan HP, Korevaar EW, Dolsma WV, et al. Minimising contralateral breast dose in post-mastectomy intensity-modulated radiotherapy by incorporating conformal electron irradiation. Radiother Oncol. 2010;94:235–40.
- 12. RTOG Foundation. Breast cancer atlas [Internet]. Philadelphia, PA: RTOG Foundation; c2018 [cited 2018 Mar 1]. Available from: https://www.rtog.org/CoreLab/ContouringAtlases/BreastCancerAtlas.aspx.95
- 13. Menzel HG. International Commission of Radiological Units (ICRU) Report 83 Journal of the ICRU Vol 10 No:1 Report 83 Oxford University; 2010.
- 14. Yang B, Wei XD, Zhao YT, et al. Dosimetric evaluation of integrated IMRT treatment of the chest wall and supraclavicular region for breast cancer after modified radical mastectomy. Med Dosim 2014; 39: 185-9.
- Krueger EA, Fraass BA, McShan DL, et al. Potential gains for irradiation of chest wall and regional nodes with intensity modulated radiotherapy. Int J Radiat Oncol Biol Phys 2003; 56: 1023-37.
- 16. Kimura T, Togami T, Takashima H, et al. Radiation pneumonitis in patients with lung and mediastinal tumours: a retrospective study of risk factors focused on pulmonary emphysema. Br J Radiol 2012; 85: 135-41.
- 17. Wang S, Liao Z, Wei X, et al. Analysis of clinical and dosimetric factors associated with treatment-related pneumonitis (TRP) in patients with non-small-cell lung cancer (NSCLC) treated with concurrent chemotherapy and three-dimensional conformal radiotherapy (3D-CRT). Int J Radiat Oncol Biol Phys 2006; 66: 1399-407.
- 18. Blom Goldman U, Wennberg B, Svane G, et al. Reduction of radiation pneumonitis by V20-constraints in breast cancer. Radiat Oncol 2010; 5: 99.
- Yorke ED, Jackson A, Rosenzweig KE, et al. Correlation of dosimetric factors and radiation pneumonitis for non-small-cell lung cancer patients in a recently completed dose escalation study. Int J Radiat Oncol Biol Phys 2005; 63: 672-82
- Harris EE, Correa C, Hwang WT, et al. Late cardiac mortality and morbidity in early-stage breast cancer patients after breast conservation treatment. J Clin Oncol 2006; 24: 4100-6.
- 21. Lohr F, El-Haddad M, Dobler B, et al. Potential effect of robust and simple IMRT approach for left-sided breast cancer on cardiac mortality. Int J

- Radiat Oncol Biol Phys 2009; 74: 73-80.
- 22. Yardley DA. Integrating bevacizumab into the treatment of patients with early-stage breast cancer: focus on cardiac safety. Clin Breast Cancer 2010;10: 119-29.
- 23. Marinko T, Dolenc J, Bilban-Jakopin C. Cardiotoxicity of concomitant radiotherapy and trastuzumab for early breast cancer. Radiol Oncol 2014; 48:105-12.
- 24. van der Laan HP, Korevaar EW, Dolsma WV, et al. Minimising contralateral breast dose in post-mastectomy intensity modulated radiotherapy by incorporating conformal electron irradiation. Radiother Oncol 2010; 94: 235-40.
- 25. Rudat V, Alaradi AA, Mohamed A, et al. Tangential beam IMRT versus tangential beam 3D-CRT of the chest wall in postmastectomy breast cancer patients: a dosimetric comparison. Radiat Oncol 2011; 6: 26.
- 26. Popescu CC, Olivotto IA, Beckham WA, et al. Volumetric modulated arc therapy improves dosimetry and reduces treatment time compared to conventional intensity-modulated radiotherapy for locoregional radiotherapy of left-sided breast cancer and internal mammary nodes. Int J Radiat Oncol Biol Phys 2010; 76: 287-95.
- 27. Stovall M, Smith SA, Langholz BM, et al. Dose to the contralateral breast from radiotherapy and risk of second primary breast cancer in the WECARE study. Int J Radiat Oncol Biol Phys 2008; 72: 1021-30.
- 28. Aras S, İkizceli T, Aktan M. Dosimetric Comparison

- of Three-Dimensional Conformal Radiotherapy (3D-CRT) and Intensity Modulated Radiotherapy Techniques (IMRT) with Radiotherapy Dose Simulations for Left-Sided Mastectomy Patients. Eur J Breast Health. 2019 Apr 1;15(2):85-89.
- 29.Liu H, Chen X, He Z, et al. Evaluation of 3D-CRT, IMRT and VMAT radiotherapy plans for left breast cancer based on clinical dosimetric study. Comput Med Imaging Graph. 2016 Dec;54:1-5.
- Kivanc H, Gultekin M, Gurkaynak M, et al. Dosimetric comparison of three-dimensional conformal radiotherapy and intensity-modulated radiotherapy for left-sided chest wall and lymphatic irradiation. J Appl Clin Med Phys. 2019 Dec;20(12):36-44.
- 31. Haciislamoglu E, Colak F, Canyilmaz E, et al. Dosimetric comparison of left-sided whole-breast irradiation with 3DCRT, forward-planned IMRT, inverse-planned IMRT, helical tomotherapy, and volumetric arc therapy. Phys Med. 2015 Jun;31(4):360-7.
- 32.Baycan D, Karacetin D, Balkanay AY, et al. Field-in-field IMRT versus 3D-CRT of the breast. Cardiac vessels, ipsilateral lung, and contralateral breast absorbed doses in patients with left-sided lumpectomy: a dosimetric comparison. Jpn J Radiol. 2012 Dec;30(10):819-23.
- 33. Rastogi K, Sharma S, Gupta S, et al. Dosimetric comparison of IMRT versus 3DCRT for post-mastectomy chest wall irradiation. Radiat Oncol J. 2018 Mar;36(1):71-78.